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Objective of the presentation

• The two risk measures that are most widely used as the basis for economic
solvency regimes are Value-at-Risk (VaR) in Solvency II and Expected Shortfall
(ES) in SST

• ES was has been generally viewed as being “better” than VaR from a
theoretical perspective because it

→ takes a policyholder perspective (is not blind to the tail and disallows
build up of uncontrolled loss peaks)

→ gives credit for diversification (is coherent)

• In this presentation we challenge the view that ES takes a policyholder
perspective

→ This complements the current discussion on ES vs. VaR which is based

exclusively on a criticism of statistical properties of ES (for an overview of

this discussion see [3])
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Basic question in a capital adequacy framework

Starting point: At t = 0 a financial institution selects a portfolio of assets and
liabilities and at t = T assets are liquidated and liabilities repaid

→ Liability holders worry that the institution may default at time T , i.e. that
capital (= “assets minus liabilities”) may become negative at t = T , ...

→ ... but they are also unwilling to bear the costs of fully eliminating the risk of
default and have to settle for some acceptable level of security

Key question for regulators: what is an acceptable level of security for policyholder
liabilities, i.e. when should an insurer be deemed to be adequately capitalized?
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Testing for capital adequacy: acceptance sets

Capital position of insurers, i.e. assets minus liabilities, at time T are random
variables X : Ω→ R defined (for simplicity) on finite state space Ω := {ω1, . . . , ωn}.
X denotes the vector space of all possible capital positions

→ X (ω) = “value of assets less value of liabilities in state ω”

Regulators subject insurers to a capital adequacy test by checking whether their capital
positions belong to an acceptance set A ⊂ X satisfying two minimal requirements:

→ Non-triviality: ∅ 6= A 6= X

→ Monotonicity: X ∈ A and Y ≥ X imply Y ∈ A

Remark

1. Because they capture diversification effects, convex acceptance sets or coherent
acceptance sets (acceptance sets that are convex cones) are of particular interest

2. We use interchangeably: acceptance set, capital adequacy test, acceptability
criterion
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The simplest acceptability criterium: scenario testing

The simplest acceptance criterion is testing whether an insurer can meet its
obligations on a pre-specified set of states of the world A ⊂ Ω. The corresponding
acceptance sets are called of SPAN-type and given by

SPAN(A) := {X ∈ X ; X (ω) ≥ 0 for every ω ∈ A} .

Remark

1. SPAN stands for Standard Portfolio ANalysis.

2. SPAN(A) is a closed, coherent acceptance set.

3. In the extreme case A = Ω, the set SPAN(A) coincides with the set of positive
random variables, i.e. an insurer would be required to be able to pay claims in
every state of the world!
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The two most common acceptability criteria: VaRα and ESα

The Value-at-Risk acceptance set at the level 0 < α < 1 is the closed, (generally)
non-convex cone

Aα := {X ∈ X ; P(X < 0) ≤ α} = {X ∈ X ; VaRα(X ) ≤ 0} ,

where
VaRα(X ) := inf {m ∈ R ; P(X + m < 0) ≤ α} .

The Expected Shortfall acceptance set at the level 0 < α < 1 is closed and coherent
and defined by

A α := {X ∈ X ; ESα(X ) ≤ 0} ,

where

ESα(X ) :=
1

α

∫ α

0
VaRβ(X ) dβ .
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Standard properties of VaRα and ESα

(a) VaRα and ESα are cash-additive, i.e. if ρ is either VaRα or ESα, then

ρ(X + m) = ρ(X )−m for X ∈ X and m ∈ R

(b) VaRα and ESα are decreasing , i.e. if ρ is either VaRα or ESα, then

ρ(X ) ≥ ρ(Y ) whenever X ≤ Y

(c) VaRα and ESα are positively homogeneous, i.e. if ρ is either VaRα or ESα, then

ρ(λX ) = λρ(X ) for X ∈ X and λ ≥ 0

(d) ESα is subadditive, i.e.

ESα(X + Y ) ≤ ESα(X ) + ESα(Y ) for X ,Y ∈ X
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Capital adequacy tests in terms of available and required capital

If X0 is the capital position at time 0 and ∆X is the profit for the period [0, 1], then

X = X0 + ∆X

= X0 + ∆X + R

where R := ∆X −∆X is the deviation around expected profit ∆X .

If ρ : X → R is either VaRα or ESα we have

ρ(X ) ≤ 0 ⇐⇒ ρ(∆X ) ≤ X0

⇐⇒ ρ(R)−∆X︸ ︷︷ ︸
required capital

≤ X0︸︷︷︸
available capital
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Motivating example

Assume X = A− L and Y = A′ − L are the capital positions of two insurers with
identical liabilities and possibly different assets. The respective payoffs to
policyholders are

PX := L− DX and PY := L− DY

where the respective insurers’ options to default DX and DY are defined by

DX := max{−X , 0} and DY := max{−Y , 0}

Clearly,
PX = PY ⇐⇒ DX = DY

It is reasonable to expect that policyholders are indifferent to having their liabilities
with the first or with the second insurer since in both instances they get exactly the
same amounts in the same states of the world

→ X and Y should be either both acceptable or both unacceptable!
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Surplus invariance

Definition ([5])

An acceptance set A ⊂ X is said to be surplus invariant, if

X ∈ A , Y ∈ X , DX = DY =⇒ Y ∈ A .

→ The name surplus invariance comes from the decomposition

X = SX − DX

where SX := max{X , 0} is the surplus. An acceptance set is surplus invariant if
acceptability does not depend on the surplus but only on the default option.
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VaRα acceptability is surplus invariant

Proposition

Then the acceptance set Aα is surplus invariant, i.e.

X ∈ Aα, Y ∈ X , DX = DY =⇒ Y ∈ Aα .

[ P(Y < 0) = P(DY > 0) = P(DX > 0) = P(X < 0) ≤ α ]

This does not invalidate the fundamental criticism of VaRα:

→ As long as P(X < 0) ≤ α holds it is blind to what happens on
{ω ∈ Ω ; X (ω) < 0} and, therefore, allows the build up of uncontrolled loss
peaks on that set!

→ It does not capture diversification!
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ESα acceptability is not surplus invariant

Proposition ([4])

Let X /∈ A α. The following statements are equivalent:

(a) There exists Y ∈ A α such that DX = DY ;

(b) P(X < 0) < α

(c) X ∈ Aβ for some β ∈ (0, α).

This situation arises in the region that distinguishes Solvency II (based on VaR0.5%)
and SST (based on ES1%):

→ If VaR0.5%(X ) ≤ 0, i.e. X is accepted under Solvency II, and ES1%(X ) > 0, i.e.
X is rejected under SST, then we find Y ∈ X such that DY = DX and
ES1%(Y ) ≤ 0, i.e. Y is accepted under SST.
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The only coherent, surplus invariant acceptability

criteria are of SPAN type

Theorem ([5])

The only coherent surplus invariant acceptance sets are those of SPAN-type. The only
law- and surplus-invariant coherent acceptance set is the set of random variables that
are everywhere positive.

→ The only law-invariant, coherent acceptability criterion that is surplus invariant is
the most conservative one: the insurer must be solvent in all states of the world!

→ All other coherent surplus invariant criteria are of the form SPAN(A) and suffer
from a similar shortcoming as VaRα: they are blind to what happens on Ac

and, therefore, allow build up of uncontrolled loss peaks on that set!
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Conclusion

Multiple competing requirements

Captures diversification Controls loss peaks Is surplus invariant
SPAN 4 8 4

VaR 8 8 4

ES 4 4 8

→ THE universally ideal capital adequacy test does not exist

→ When choosing a capital adequacy test we need to weigh the relative
importance of competing and, sometimes, mutually exclusive requirements

THANK YOU FOR YOUR ATTENTION!
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